If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+w-5=37
We move all terms to the left:
w^2+w-5-(37)=0
We add all the numbers together, and all the variables
w^2+w-42=0
a = 1; b = 1; c = -42;
Δ = b2-4ac
Δ = 12-4·1·(-42)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-13}{2*1}=\frac{-14}{2} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+13}{2*1}=\frac{12}{2} =6 $
| 3x4x=7 | | 9-6(-4b-2)=93 | | 2^2x+4.2^x-32=0 | | 2(2x+1)(x^2+x-4)=0 | | 20+3y=30 | | -9+8(4+7k)=520+7 | | y-7/3=-21/5 | | 17w-21=-17 | | 7x+3x–8=2(5x–4) | | 5x-129=45 | | 8(x-1)-16=24 | | 6(2x+1)=2(3x+15) | | 7x-3+7=3(×-4)+20 | | 1/2(4x-8)=1/3(9x+15) | | 5(4x-1)+4(2x-1)=40 | | F(x)=-3/10x-8 | | -7k=-2k+13 | | 6v^2+18v+64=0 | | 32+6=4x | | 6x+(16-2x)=4(4+x) | | (3t^2)-15t=-17 | | 3(x+4)=3x+121 | | -m-39/5=2/7 | | -8+5w=2 | | 5x-30=2(2x+3) | | 8(2x-9)-3=12(x-8)+5 | | X+132x=180 | | x²+2x-128=0 | | -12x+21=10x+51-25x | | -1/4x+3/4x+5=1 | | -1/4x+3/4x=1 | | x/2-3=3/2+x |